

Journal of Organometallic Chemistry 522 (1996) 39-54

Syndiospezifische Polymerisation von Propylen: 2- und 2,7-substituierte Metallocenkomplex des Typs $(C_{13}H_{8-n}R_{n}CR'_{2}C_{5}H_{4})MCl_{2}(n = 1,2;$ $R = Alkoxy, Alkyl, Aryl, Hal; R' = Me, Ph; M = Zr, Hf)^{-1}$

Helmut G. Alt *, Roland Zenk

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 10 12 51, D-95440 Bayreuth, Germany

Eingegangen den 26. September 1995

Abstract

Seventeen new catalyst precursors for the syndiospecific polymerization of propylene are presented. The new metallocene complexes are substituted in the positions 2 and 7 of the fluorenylidene fragment by MeO-, halogen-, alkyl- and aryl groups. The focus is directed on effective new synthetic routes to substituted fluorenes and the preparation of the catalyst precursors. In addition first polymerization results are reported.

Zusammenfassung

Siebzehn neue Metallocen-Katalysatorvorstufen für die syndiospezifische Polymerisation von Propylen mit MeO-, Halogen-, Alkylund Arylsubstituenten in den Positionen 2 und 7 des Fluorenylidenfragmentes werden vorgestellt. Im Mittelpunkt stehen effektive neue Synthesewege für die Darstellung substituierter Fluorene und die Synthese der Katalysatorvorstufen; darüber hinaus wird über erste Polymerisationsergebnisse berichtet.

Keywords: Zirconium; Hafnium; Fluorenyl; Syndiotactic polypropylene, Catalysis; Polymerization

1. Einleitung

Die stereospezifische Polymerisation von α -Olefinen mit Hilfe löslicher Metallocenkatalysatoren stellt seit einigen Jahren ein heftig umkämpftes Forschungsgebiet dar [1-32]. Vor allem die chemische Industrie unternimmt große Anstrengungen, da die neuen Katalysatorsysteme aufgrund ihrer z. T. außergewöhnlich hohen Aktivität, Stereoselektivität und Variabilität neuartige Polyolefinmaterialien mit maßgeschneiderten Eigenschaften und sehr enger Molmassenverteilung zugänglich machen. Das Hauptaugenmerk gilt dabei den isospezifischen Katalysatoren, die inzwischen so weit entwickelt sind, daß sie kurz vor der Markteinführung stehen [27]. Als gemeinsames Merkmal weisen nahezu alle isospezifischen Katalysatorvorstufen (Metallocendichloridkomplexe) C_2 -Symmetrie auf und werden als Racemat eingesetzt (vgl. [1,2]).

Die Palette der bis heute verfügbaren syndiospezifischen Katalysatorvorstufen ist sehr viel kleiner. Die ersten C_s -symmetrischen Metallocenkatalysatoren für die Olefinpolymerisation, $(C_{13}H_8CMe_2-C_5H_4)MCl_2(M$ = Zr, Hf), stammen von Razavi [9].

Seither wurden einige strukturell ähnliche Verbindungen veröffentlicht, die dem ursprünglichen Katalysator teilweise überlegen sind [14,16,17,19,27,32]. Sie unterscheiden sich nahezu ausschließlich durch die

Corresponding author.

¹ Professor Max Herberhold zum 60. Geburtstag (am 2. Aug. 1996) gewidmet.

Abb. 1. Erster syndiospezifischer Zirkonocenkatalysator (Vorstufe) [9].

Brückenatome, Brückensubstituenten und durch Substituenten am aromatischen Fünfring [19,27]. Dagegen sind bis heute nur sehr wenige Beispiele bekannt, die am Fluorenylidenfragment substituiert sind [17,32].

Um diese Lücke zu schließen, wurden zahlreiche neue syndiospezifische Katalysatorvorstufen mit unterschiedlichsten Substituenten an den Positionen 2 bzw. 2 und 7 des Fluorenylidenfragmentes synthetisiert und zur Polymerisation von Propylen eingesetzt. Der Einfluß einer unsymmetrischen Substitution auf die Polymerisationseigenschaften sowie sterische und elektronische Effekte werden betrachtet. Darüber hinaus werden Grenzen der Substituierbarkeit aufgezeigt, die durch die sterischen Ansprüche der jeweiligen Seitengruppen gegeben sind.

2. Ergebnisse und Diskussion

2.1. Synthese von 2- und 2,7-substituierten Fluorenen

Nur wenige der gewünschten substituierten Fluorene sind kommerziell erhältlich oder sind durch kurze, unkomplizierte Literaturvorschriften zugänglich. Um die Auswahl an Fluorenderivaten zu erweitern und um deren Herstellung effizienter und einfacher zu gestalten, wurden mehrere neue Synthesewege beschritten.

2,7-Dimethoxyfluoren (1) entsteht durch CuBr-katalysierte Methanolyse von 2.7-Dibromfluoren in einer einzigen Stufe und mit hoher Ausbeute. Die bekannten Literaturvorschriften gehen dagegen von Anisolderivaten aus und benötigen mindestens vier Stufen mit z. T. aufwendigen Reinigungsoperationen [33].

Die Synthese des sterisch anspruchsvollen 2,7-

Bis(1-methyl-1-phenylethyl)fluorens (3) gelingt in zwei Stufen. 2,7-Dibenzoylfluoren [34] (2) läßt sich in guter Ausbeute auch ohne Lösungsmittel durch Friedel-Crafts-Acylierung von Fluoren mit Benzoesäure in heißer Polyphosphorsäure (PPA) herstellen. Es reagiert in Anlehnung an eine Vorschrift von Ong et al. [35] mit Trimethylaluminium in siedendem Toluol glatt zu 3.

Die folgende Syntheseroute eignet sich hervorragend für die Darstellung mono- und disubstituierter Fluorene und führt durchwegs zu guten bis sehr guten Ausbeuten. Durch sie wird eine ganze Reihe von substituierten Fluorenen leicht zugänglich, für die bisher nur wenige und z. T. sehr aufwendige Herstellverfahren beschrieben sind, z. B. für 2,7-Dimethylfluoren [36] (8), 2-Phenylfluoren [37] (5), 2,7-Diphenylfluoren [38] (11) und 2,7-Bis(2,4-dimethylphenyl)fluoren [39] (14). Darüber hinaus erschließt sie den Zugang zu bisher unbekannten Fluorenderivaten:

2-Iod-bzw. 2,7-Diiodfluoren [40] werden mit einem geringen Überschuß eines Alkyl- oder Arylgrignardreagens und einer katalytischen Menge Ni(dppp)Cl₂ [41] umgesetzt (dppp = $Ph_2PCH_2CH_2CH_2Ph_2$). Die Reaktion ist nach ein bis zwölf Stunden beendet. Wichtig ist die Wahl des Lösungsmittels. In Tetrahydrofuran verläuft die Reaktion zwar wesentlich schneller, allerdings entstehen dabei größere Mengen oligomerer Nebenprodukte, die die Reinigung erheblich erschweren und die Ausbeute vermindern. Besser eignet sich Diethylether, der die Nebenproduktbildung unterdrückt. Als Ausgangsverbindungen eignen sich auch 2-Brom- bzw. 2.7-Dibromfluoren; allerdings ist die Reaktionsdauer wesentlich länger.

Tabelle 1 ¹ H- und ¹	³ C-NMR-Daten dei	r substituierten Fluo	stene 1–16 (& Werte in ppm)	
Nr.	R ⁱ	R²	¹ H-NMR	¹³ C-NMR
_		MeO	3.81 (s, 2 H), 3.85 (s, 6 H), 6.90 (d, ³ // ¹ H, ¹ H) 8.3 Hz, 2 H), 7 ns (c, 2 H), 7 se (c, ³ n ¹ H ⁻¹ H) 8 c H- 2 H)	37.0 (CH ₂), 55.4 (OCH ₃), 110.6, 112.7, 119.5, 134.7, 144.4, 158.4
7	H	PhC0		$36.6 \text{ (CH}_3)$, 120.3, 126.8, 128.2, 129.5, 129.9, 132.3, 136.8, 127.8, 124.1, 124.4, 106.4 ($C = O$)
m	ł	PhMe ₂ C	7.02-7.21 (m, 4 m, 6.01 (s, 2 m) 1.81 (s, 12 H), 3.84 (s, 2 H), 7.21-7.35 (m, 2 H), 7.34 (m, 10 101 - 2 m, 2 m, 101 - 2 m, 101 e 1 m - 2 m)	12.06, 144.11, 144.54, 170.470, 170. 31.0 (CH ₃), 37.0 (CH ₂), 43.1, 119.1, 123.4, 125.4, 125.5, 13.6 8, 13.6 1, 13.0, 14.0, 14.0, 15.0
4	Me	I	n, , , , , , , , , , , , , , , , , , ,	120.0, 120.0, 137.2, 147.1, 171.0 21.6 (CH3), 36.7 (CH2), 119.6, 119.6, 124.9, 125.7, 126.2, 176.6 175.5 126.5 130.1 141.6 142.0 142.
Ś	Ph	I	(m, 2 m, 7.24 (m, 1 m, 7.09 (m, 1 m), 7.77 (m, 1 m) 3.96 (s, 2 H), 7.35 (m, 3 H), 7.47 (m, 2 H), 7.56 (m, 1 H), 7.66	7200, 127.3, 130.3, 139.1, 141.6, 143.0, 145.0, 126.0, 126.7, 37.0 (CH ₂), 101.9, 119.9, 1201, 123.8, 125.0, 126.0, 126.7,
9	4-F(C ₆ H ₄)	I	(т. 3 Н), 7.81 (т. 3 Н) 3.95 (s, 2 H), 7.15 (т. 2 Н), 7.30-7.50 (т. 2 Н), 7.52-7.65 (т.	120.8, 127.1, 127.2, 128.8, 139.9, 140.9, 141.5, 145.5, 145.9 36.9 (CH ₂), 115.4, 115.7, 119.9, 120.1, 123.6, 125.0, 125.8,
			4 H), 7.72 (s, 1 H), 7.82 (d. ³)(¹ H, ¹ H) 7.2 Hz, 1 H), 7.83 (d. ³)(¹ H, ¹ H) 7.5 Hz, 1 H)	126.8 (d, ³ /(¹⁹ F, ¹³ C) 4.3 Hz), 128.6, (d, ² /(¹⁹ F, ¹³ C) 8.0 Hz), 134.1, 135.7, 138.8, 140.9, 141.3, 143.4, 143.9, 162.4 (d, 17(¹⁹ F, ¹³ C) 244 F Hz).
٢	2,4,6- Me ₃ (C ₆ H ₂)	I	2.16 (s, 6 H), 2.45 (s, 3 H), 4.01 (s, 2 H), 7.07 (s, 2 H), 7.25 (m, 1 H), 7.40 (m, 2 H), 7.48 (m, 1 H), 7.64 (m, 1 H), 7.91 (m, 2 H)	20.8 (<i>o</i> -CH ₃), 21.0 (<i>p</i> -CH ₃), 36.9 (CH ₂), 119.7, 125.0, 125.9, 126.5, 126.7, 127.9, 128.0, 128.0, 136.0, 136.4, 139.3, 139.7, 140.0 141.6 143.7 143.4
90	1	Me	2.43 (s, 6 H), 3.81 (s, 2 H), 7.17 (d, ³ /J ⁽¹ H, ¹ H) 7.7 Hz, 2 H), 7 3346 - 7 H) - 7.64464 ³ M ¹ H - ¹ H) 7 7 H - 7 H)	21.6 (CH ₃), 36.6 (CH ₂), 119.2, 125.7, 127.5, 136.0, 139.1,
6	ł	'n	1.36 (d, ³)(¹ H, ¹ H) 6.9 Hz, 12 H), 3.03 (sept. ³)(¹ H, ¹ H) 6.9 Hz, 2 H), 3.88 (s, 2 H), 7.26 (d, ³)(¹ H, ¹ H) 7.8 Hz, 2 H), 7.43 (s, 2 H), 7.44 (s, 2 H), 7.	24.2 9CH ₃), 34.3 (CH), 36.8 (CH ₂), 119.3, 122.9, 125.0, 139.6, 143.4, 147.2
10	I	C ₆ H ₁₁	HJ, 7.00 (m, JO, H), 1.70-2.00 (m, 10 H), 2.56 (m, 2 H), 3.83 [s, 2 H), 7.19 (d, ³ /c ¹ H, ⁴ H) 7.9 Hz, 2 H), 7.37 (s, 2), 7.64 (d, ³ /c ¹ H) 7.9 Hz, 2 H), 7.37 (s, 2), 7.64 (d, ³ /c ¹ H) 7.9 Hz, 2 H), 7.57 (s, 2), 7.64 (d, ³ /c ¹ H) 7.64 (d	26.2, 27.0, 34.7, 36.8 (9-CH ₂), 44.8, 119.3, 123.3, 125.4, 139.6, 143.4, 146.3
=	ł	Ъħ	401 (s, 2 H), 7.35(m, 2 H), 7.45 (m, 4 H), 7.65 (m, 6 H), 7.78 (s, 2 H), 7.85(m, 2 H), 7.45 (m, 4 H), 7.65 (m, 6 H), 7.78	37.1 (CH ₂), 101.7, 120.2, 123.8, 126.1, 127.2, 128.8, 139.9, 140.6 (41.5, 144.1
12	l	4-Me(C ₆ H ₄)	2.42 (s, 6 H), 3.99 (s, 2 H), 7.26 (m, 4 H), 7.56 (m, 4 H), 7.60 (d, ³)(¹ H, ¹ H) 7.8 Hz, 2 H), 7.76 (s, 2 H), 7.82 (d, ³)(¹ H, ¹ H) 7.8 Hz, 2 H), 7.75 (s, 2 H), 7.82 (d, ³)(¹ H, ¹ H) 7.8 Hz, 2 H), 7.85 (s, 2 H), 7.82 (s, ³)(¹ H, ¹ H) 7.8 Hz, 2 H), 7.82 (s, ³)(¹ H, ¹ H), 7.8 Hz, 2 Hz,	21.1 (CH ₃), 37.1 (CH ₂), 120.1, 123.6, 125.9, 127.0, 129.5, 136.9, 138.6, 139.7, 140.4, 144.1
13	I	4 МеОС Н)	пz, z п) 3.85 (s, 6 H), 3.98 (s, 2 H), 6.98 (m, 4 H), 7.58 (m, 6 H), 7.72 (с њ. 2 н) 7 81 (d ³ /d ¹ H ⁴ H) 7 8 H ₂ 7 H)	п.b.
14	I	2,4 2,4 Me ₂ (C ₆ H ₃)	2.34 (5, 6H), 2.43 (5, 6H), 4.00 (5, 2H), 7.10–7.32 (m, 6H), 7.38 (d. ³ /0 ⁴ H) 7.8 Hz, 2 H), 7.53 (s, 2 H), 7.85 (d. ⁵ /0 ⁴ H), 11, 12, 12, 12, 12, 12, 12, 12, 12, 12,	20.5 (CH ₃), 21.0 (CH ₃), 37.0 (CH ₂), 119.3, 125.9, 126.5, 128.1, 129.0, 131.1, 135.2, 136.7, 139.4, 140.0, 140.4, 143.2
15	ł	2,4,6- Me ₃ (C ₆ H ₂)	n)	20.8 (<i>o</i> -CH ₃), 21.0 (<i>p</i> -CH ₃), 37.0 (CH ₂), 119.7, 125.9, 128.0, 128.0, 128.0, 136.4, 139.3, 139.6, 140.0, 143.5
16	ł	l-Naph	4.07 (s, 2 H), 7.41–7.59 (m, 10 H), 7.71 (m, 2 H), 7.86 (m, 2 H), 7.90 (m, 2 H), 7.96 (m, 2 H), 8.00 (m, 2 H)	37.1 (CH ₂), 119.7, 125.4, 125.8, 126.0, 126.1, 126.8, 127.0, 127.6, 128.3, 129.0, 131.8, 133.9, 139.4, 140.5, 140.6, 143.6

H- und "C-Y	NMR-Daten der Ligandenvorstufen 17a/17a - 36a/36a (3-Wente im ppm)	
Nr.	'H-NMR	¹³ C-NMR
17a/17a ⁻ 58/42	1.03/1.05 (s, 6 H), 2.305/2.314 (s, 6 H), 3.05/3.12 (m, 2 H), 3.97/4.01 (s, 1 H), 5.87/6.00 (m, 1 H, oktin, C.H.), 6.40-6.45/6.49-6.53/6.59-6.64 (m, 7 H	21.75 (CH ₃), 21.77 (CH ₃), 24.4 (CH ₃), 25.7 (CH ₃), 39.3, 40.4, 40.7, 40.8, 55.4 (9.CH) 577 (9.CH) 118.6 118.6 124.9 124.5 124.8 127.0 127.6 127.6
180 / 184 *	okefin. C ₅ /H ₅), 684/692 (s, 2 H), 709 (m, 2 H), 751 (d, ³ /(⁴ H, ⁴ H) 77 Hz, 2 H)	
66/34	1.10/1.10(3),9 (1), 3.12/3.24 (11), 4.22/4.27 (3, 1 H), 0.01/0.23 (11), 1 H, obefin: C ₅ /H ₅), 6.48-6.53/6.59-6.64/6.66-6.71/697-7.02 (11), 2 H, obefin: C ₅ /H ₅), 7 30-7 40 (11) 7 40-7 50 (11) 7 55-7 54 (11) 5 55-7 54 (11) 5 H) 77 54 3 H ¹ U ⁻¹ h)	24.5 (C H3, K, 25.7 (C H3, K, 59.6, 40.7, 40.8, 41.1, 55.8 (9-C N), 58.2 (9-C H), 119.6, 119.7, 124.8, 125.0, 125.1, 126.2, 126.2, 126.8, 127.0, 127.0, 127.1, 139.7, 132.7, 133.7, 134.8, 130.0, 140.0, 141.6, 144.5, 144.5
		126.1, 122.2, 122.2, 124.2, 136.3, 140.3, 140.3, 141.2, 141.0, 140.2, 155.5, 157.9
19a/19a 57/43	1.16/1.19(s, 6 H), 2.04(s, 6 H), 2.135/2.143(s, 6 H), 2.40(s, 6 H), 2.94/3.12 (m. 2 H), 4 27/4.30(s, 1 h), 5 93/613(m, 1 H, adefini C. H), 6 37–6 37/6 30_	20.7 (CH ₃), 20.8 (CH ₃), 20.8 (CH ₃), 21.0 (CH ₃), 24.8 (CH ₃), 26.2 (CH ₃), 39.7, 40.5 40.7 40.8 55.6 (0CH) 58.0 (0CH) 110.1 110.2 124.7 125.4 127.0
	6.45/6.50-6.55/6.86-6.91 (m, 2 H, olefin, C ₅ <i>H</i> ₅), 7.00 (s, 2 H), 7.03 (s, 4 H), 7.16 (m, 2 H), 7.82 (d, ³)(¹ H, ¹ H) 7.7 Hz, 2 H)	1272, 1279, 128.0, 128.0, 128.1, 128.3, 131.1, 131.8, 132.8, 134.5, 135.9, 136.10, 136.2, 136.4, 138.7 138.8, 139.4, 139.6, 140.3, 140.4, 145.7,
68/32	1.02/1.04/05/011/12/07/1.27/1/05/10/15/10/05/02/19/00/24/10/05/1 H), 5.89/6/11 (m, 1 H, okefin. C, H,), 6,42-6,47/650-6.55/662-6.67/694-7 (0	24.5 (CH3,F, 25.6 (CH3,F, 31.5 (C(CH3,F), 31.52 (C(CH3,F), 34.7, 34.7, 39.4, 40 5, 40 8, 41 0, 55.6 (9-CH) 58.0 (9-CH) 118.4 123.7 123.4 123.7
87/13	(m, 2 H, olefin, C, H,), 7,09/7,21 (s, 2 H), 7,30 (d, ³ /(¹ H, ¹ H) 7.8 Hz, 2 H), 7.55 (d, ³ /(¹ H, ¹ H) 7.8 Hz, 2 H)	124.7, 126.5, 130.9, 132.4, 133.4, 134.1, 139.4, 145.3, 148.5, 148.6, 155.8, 158.1
21a/21a	1.06/1.08 (s, 6 h), 3.07/3.15 (m, 2 h), 3.738/3.744 (s, 6 H), 3.99/4.04 (s, 1 H).	24.3 (CH.). 25.4 (CH.). 39.4.40.4.40.7.40.9.55.3 (OCH.). 55.4 (OCH.).
55/45	5.94/6.16 (m, 1 H, oktin. C, H,), 6.42-6.47/6.50-6.55/6.60-6.66/6.90-6.95 (m,	55.6 (9-CH), 57.9 (9-CH) 112.0, 112.3, 112.7, 1129, 118.9, 119.0, 125.1,
	2 H, olefin. C ₅ <i>H</i> 5), 6.62/7.72 (d, ⁴ <i>I</i> (¹ H, ¹ H) 2.4 Hz, 2 H), 6.82–6.88 (m, 2 H), 7.48 (d, ³ <i>I</i> (¹ H, ¹ H) 8.3 Hz, 2 H)	1268, 131.0, 132.2, 133.2, 134.3, 135.0, 135.1, 146.5, 146.6, 155.2, 157.6, 157.7
12a/22a	1.02/1.04 (s, 6 H), 3.08 (m, 2 H), 3.97/3.99 (s, 1 H), 5.90/6.13 (m, 1 H, olefin.	24.2 (CH.), 25.6 (CH.), 39.5, 40.5, 40.6, 40.9, 55.7 (9-CH), 57.9 (9-CH).
62/38	С ₅ И ₅), 6.43-6.47/6.51-6.55/6.64-6.70/6.83-6.87 (т. 2 Н. онейн, С ₅ И ₅), 7.00/ 7.06 (d. ⁴ /(⁴ H, ⁴ H) 1.8 Hz, 2 H), 7.25-7.31 (т. 2 H), 7.51/7.52 (d. ³ // ⁴ H, ⁴ H) 8.1	1201, 1202, 125.7, 126.4, 126.6, 127.3, 127.4, 127.4, 131.2, 132.0, 132.1, 1321, 132.6, 135.0, 139.4, 139.5, 146.8, 154.3, 156.4
	H2, 2 H)	
23a/s23a	1.02/1.04 (s, 6 H), 3.08 (m, 2 H), 3.96/3.98 (s, 1 H), 5.89/6.14 (m, 1 H, olefin.	24.2 (CH ₃), 25.6 (CH ₃), 39.5, 40.5, 40.6, 40.9, 55.8 (9-CH), 58.0 (9-CH),
78/22	C ₅ H ₅), 6.43-6.49/6.51-6.57/6.63-6.72/6.82-6.85 (m. 2 H. okfūr. C ₅ H ₅), 7.15/ 7.21 (s. 2 H), 7 40-7 49 (m. 4 H)	120.3, 120.6, 120.6, 125.8, 127.5, 129.3, 129.5, 130.2, 130.3, 131.2, 132.1, 132 6, 135 1, 130 0, 147 0, 156 3, 156 3
24a / 24a -	2 18/2 77 (s 6 k) 2 80/3 00 (m fm 2 H) 5 20 /5 33 (s 1 H) 5 05 - 6 50 (m fm 2	1 9 / CT \ AAK 42 A 52 K 54 1 50 / DAV 110 2 110 4 126 0 20 CA
84/16	H. olefin. C ₅ /H ₅), 6.65-7.55 (m by, 16 H)	21.6 (C H 3), 40.0, 43.0, 33.0, 34.1, 36.9, 00.0, 116.3, 116.4, 123.6, 123.9, 126.2, 126.8 (br), 127.0 (br), 127.4 (br), 127.5 (br), 127.8 (br), 129.9, 130.0,
15 ~ / 1 5~	387/303/ 310 € 46 /661 (- 110) € 1 € 6/ fr. 311 -1-E- fr. 11 / 6	131.5, 131.8 (br), 132.4, 134.9, 135.1, 135.4, 135.6, 139.5, 139.6, 144.6, 144.9
64/36	2.01/2.02.01.11/2.11/2.01/2.01/11/11/11/11/01/2004/01/03/2012/02/04/2012/2.06- 7.7 (m.br. 22.H)	40.8 (61/, 42.9 (61/, 53.8 (61/, 54.4, 59.1, 60.2, 119.0, 119.1, 119.2, 119.3, 125.4 (6r), 125.6 (6r), 125.8, 125.9, 125.9, 126.0, 126.1, 126.8, 126.9, 126.9,
		1269, 1271. (br), 128.6, 128.6, 129.8, 129.8, 129.9, 131.5, 132.7, 135.4, 138.6
26a/26a	2.90/3.04 (M BR, 2 h), 5.54/5.47 (S, 1 h), 6.1–6.7 (m br. 3 H, okfm. C ₅ H ₅),	40.7, 43.0, 54.0, 54.6, 59.1, 60.2, 119.3, 119.4, 125.3, '25.5, 125.8, 125.9,
59/41	0.9–7.6 (m br. 26 H)	1260, 126.1, 126.8, 127.3 (br), 128.2, 128.6, 128.7, 12 ^{.0} , 129.8 (br), 130.0 (br), 131.5 (br), 132.8 (br), 135.5, 137.8, 138.5, 138.6, 140.9, 141.0, 141.4,
		141.4, 145.5, 145.8
11a / 21a 66 / 34	2.13 (5 07, 0 H), 2.38 (5 07, 0 H), 2.87/3.00 (m br, 2 H), 3.66 /5.66 (s, 1 H), 6.10-6.70 (m br, 3 H, olefin. C ₅ <i>H</i> ₅), 6.70-7.60 (m, 20 H), 7.51/7.52 (d, ³ /(¹ H. ¹ H) 7.8 Hz, 2 H)	20.4 (CH 3), 20.5 (CH 3), 21.0 (CH 3), 40.8, 42.7, 53.6 (br), 54.3, 59.5, 60.5, 118.5, 118.6, 125.9, 126.0, 126.4, 126.4, 127.2 (br), 127.8 (br), 128.1, 128.3, 128.4, 129.8 (br), 130.0, 131.0, 131.1, 131.4, 132.7, 135.0, 135.0, 135.3, 136.4, 136.5, 139.5, 140.4, 140.5, 144.5, 144.8

Tabelle 2 ¹H- und ¹³C-NMR-Daten der Ligandenvorstufen 17a/17a° - 36a/36a° (3-Werte im p

28a/28a	1.84 (s br, 3 H), 2.04/2.05 (s, 3 H), 2.35 (s, 3 H), 2.86/3.07 (m, 2 H), 5.57/5.60	20.7 (CH ₃), 20.8 (CH ₃), 20.8 (CH ₃), 21.0 (CH ₃), 40.7 (br), 53.9 (br), 54.5,
84/16	(s, 1 H), 6.0–6.7 (m br, 3 H, okefin. (C ₅ <i>H</i> ₅), 6.8–7.7 (m br. 15 H), 7.54 (d. ³ /l ¹ H, ¹ H) 7.7 Hz, 2 H)	59.2, 118.8, 118.9, 125.9, 126.0, 126.8, 126.9, 127.0 (br), 127.9, 128.1, 128.2, 128.4, 129.8 (br), 130.0, 132.3 (br), 135.4, 135.9, 136.1, 136.1, 138.8, 139.5, 140.4, 142.0, 142.1, 145.0, 145.0
29a/29a° 78/22	1.86 (s br, 6 H), 2.00/2.01 (s, 6 H), 2.33 (s, 6 H), 2.82/2.98 (m br, 2 H), 5.64/5.68 (s, 2 H), 6.1–6.6 (m br, 3 H, olefin. C ₅ <i>H</i> ₅), 6.6–7.6 (m br, 18 h), 7.54 (d, ³ /t ¹ H, ¹ H) 7.8 Hz, 2 H)	20.7 (CH ₃), 20.8 (CH ₃), 21.0 (CH ₃), 40.8, 54.5, 59.5, 101.9, 118.7, 126.0, 127.1 (br), 127.9, 128.0, 128.4, 128.5, 129.8 (br), 135.3, 135.9, 136.1, 136.1, 138.7, 139.5, 140.5, 145.1
30a/30a 71/29	1.i4/1.18 (s, 18 H), 2.90/3.01 (m br, 2 H), 5.45/5.49 (s, 1 H), 5.9-6.6 (m br, 3 H, olefin. C ₅ <i>H</i> ₅), 6.6-7.45 (m br, 16 H)	31.4 (C(CH ₃), 31.4 (C(CH ₃), 34.6, 34.7, 40.7, 43.0, 53.6, 54.2, 59.1, 60.0, 118.0, 118.1, 123.45, 123.53, 124.3, 124.4, 125.8, 125.9, 127.0 (br), 129.9, 120.0, 131.5, 137.5, 135.6, 130.6, 130.5, 144.4, 144.7, 148.4, 148.5
31a/31a° 68/32	1.51/1.55/1.56 (s, 12 H), 2.79/2.85 (m br, 2 H), 5.38/5.43 (s, 1 H), 6.0-6.45 (m br, 3 H, olefin. C ₅ H ₅), 6.8-7.4 (m br, 26 H)	30.4 (CH ₃), 30.5 (CH ₃), 30.6 (CH ₃), 40.6 (br), 42.9, 53.4 (br), 54.0, 59.0, 60.0, 118.1, 118.2, 125.1, 125.2, 125.3, 125.7, 125.9, 125.9, 126.7, 126.8, 126.9 (br), 129.8 (br), 130.0, 131.5, 132.2, 135.2, 139.4, 139.5, 144.4, 144.7, 148.2, 148.3, 150.9, 151.0
32a/32a° 75/25	2.77/3.01 (m br, 2 H), 3.53/3.59 (s br, 6 H), 5.19/5.25 (s, 1 H), 5.9–6.7 (m br, 3 H, olefin. C ₅ <i>H</i> ₅), 6.7–7.6 (m br, 16 H)	40.7 (br), 42.9, 53.6 (br), 54.2, 55.1 (OCH ₃), 55.2 (OCH ₃), 58.9, 59.9, 112.6 (br), 113.2 (br), 118.6, 118.7, 125.9, 126.0, 127.2 (br), 129.8 (br), 131.5, 137.6, 135.1, 135.2, 135.7, 145.0, 157.5, 157.6
33a/33a° 88/12	2.78/3.05 (m br. 2 H). 5.21/5.25 (s. 1 H). 6.0–6.6 (m br. 3 H, okfin. C ₅ H ₅). 6.8–7.4 (m br. 16 H)	40.8, 42.7, 53.8, 54.5, 58.9, 59.9, 119.7, 119.8, 126.2, 126.4, 127.2, 127.3, 127.4 (br), 129.5 (br), 131.5, 132.0, 132.1, 132.1, 132.1, 132.7 (br), 132.9, 135.0, 139.4, 136.5, 146.1,
34a/34a° 67/33	2.78/3.05 (m br, 2 H), 5.27/5.30 (s, 1 H), 6.0–6.6 (m br, 3 H, olefin. C ₅ H ₅), 6.8–7.4 (m br, 16 H)	40.8, 42.8, 54.0, 54.6, 58.8, 59.9, 120.2, 120.2, 120.3, 120.4, 126.3, 126.4 (br), 127.4 (br), 129.6, 129.7, 129.9, 130.1, 130.2, 130.3, 131.4, 132.9, 135.0, 139.9, 136.9, 146.3, 146.8, 145.
35a/35a 50/50	0.79/0.81 (s, 3 h), 1.29/1.30 (s, 3 H), 2.426/2.435 (s, 3 H), 3.03–3.15 (m, 2 H), 4.29/4.35 (s, 1 H), 5.88/6.10 (m, 1 H, olefin. C ₅ H ₅), 6.40–6.74 (m, 2 H, olefin. (m, 2 H) 7.57–7.64 (m, 1 H) 7.66–7.73 (m, 1 H)	21.28 (CH ₃), 21.37 (CH ₃), 23.0 (CH ₃), 23.9 (CH ₃), 28.2 (ArCH ₃), 29.8 (ArCH ₃), 40.8, 41.0, 41.6, 42.7, 55.2 (9-CH), 57.4 (9-CH), 116.8, 119.0, C ₅ H ₃), 693-7.00 (m, 1 H), 7.08-7.15 (m, 1 H), 7.28-7.39 (m, 1 H), 7.39-7.49119.0, 128.7 1300 1370 1370 1373 1334 1337 1351 1410 1420 0
36a/36a ° 70/30	0.94/1.07 (s, 3 H), 1.93/2.08 (s, 3 H), 2.85/2.92 (m. 2 H), 5.01/5.03 (s, 1 H), 5.96/6.11 (m, 1 H), 6.18-6.25/6.30-6.53 (m, 4 H), 6.80-6.95 (m. 1 H), 7.00 (d, ³ J(¹ H, ¹ H) 7.6 Hz, 1 H), 7.18-7.70 (m, 9 H)	1430, 1448, 144.9, 146.3, 146.4 18.7 (CH ₃), 19.9 (CH ₃), 20.5 (CH ₃), 22.1 (CH ₃), 40.6, 43.9, 48.6, 49.0, 55.3, 56.4, 116.6, 116.7, 119.0, 119.0, 125.0, 125.2, 125.6, 125.7, 126.1, 126.2, 126.9, 127.3, 127.6, 127.7, 127.9, 128.1, 238.3, 128.4, 128.5, 128.5, 128.9, 130.1, 131.9, 132.5, 132.6, 135.1, 135.2, 136.5, 136.9, 142.2, 142.3, 143.1, 143.2, 143.9, 144.0, 145.9, 146.3, 147.2, 154.2, 155.8

8 ($R^2 = Me$); 9 ($R^2 = {}^{i}Pr$); 10 ($R^2 = C_6H_{11}$); 11 ($R^2 = Ph$); 12 ($R^2 = 4$ -Me(C_6H_4)); 13 ($R^2 = 4$ -MeO(C_6H_4)); 14 ($R^2 = 2,4$ -Me₂(C_6H_3)); 15 ($R^2 = 2,4,6$ -Me₃(C_6H_2)); 16 ($R^2 = 1$ -Naph)

Wie die verminderte Ausbeute an 6 zeigt, desaktivieren Fluorsubstituenten den durch das Magnesium negativ polarisierten Kohlenstoff des Grignardsreagens. Pentafluorphenylmagnesiumiodid reagiert unter obigen Bedingungen selbst nach einer Woche nicht mit 2.7-Diiodfluoren.

Tabelle I gibt clnen Überblick über die ¹H- und ¹³C-NMR-Daten der nach dem neuen Verfahren hergestellten Fluorenderivate **4–16**.

2.2. Synthese der Ligandenvorstufen $C_{13}H_{9-n}R_nCR'_2$ - C_3H_3 (n = 1,2; R = Alkoxy, Alkyl, Aryl, Hal; R' = Me, Ph) 17a/17a'-36a/36a')

Für die Synthese der Ligandenvorstufen, die ein quartüres Brückenkohlenstoffatom besitzen, steht bislang nur die sogenannte Fulvenmethode [16.21.26] zur Verfügung. Das Lithiumsalz des entsprechend substituierten Fluorens wird mit 6.6-Dimethyl- oder 6.6-Diphenylfulven umgesetzt. Die Reaktion läuft in Diethylether mit schr guter Ausbeute ab. 6,6-Dimethylfulven [42] reagiert innerhalb von Minuten mit dem Lithiumsalz, während die vollständige Umsetzung mit dem sterisch stärker abgeschirmten 6,6-Diphenylfulven [43] mindestens zwölf Stunden dauert. Bei der Hydrolyse entsteht ein Gemisch zweier Isomere, die sich durch die Anordnung der Doppelbindungen im Fühfring unterscheiden. Eine Trennung ist nicht erforderlich, da die Fünfringe vor der anschließenden Komplexierung aromatisiert werden.

Tabelle 2 faßt die ¹H- und ¹³C-NMR-Daten der Ligandenvorstufen 17a/17a^{*}-36a/36a^{*} zusammen. Die diphenylmethylenverbrückten Ligandenvorstufen 24a/24a^{*}-34a/34a^{*} zeigen infolge der extremen sterischen Beladung des Brückenkohlenstoffatoms sowohl im ¹H- als auch im ¹³C-NMR-Spektrum zum Teil sehr breite, sich überlagernde Signale, die sich auch durch Abkühlen $(-50^{\circ}C)$ oder Aufheizen $(+50^{\circ}C)$ der Probe nicht auflösen oder ausmitteln lassen. Die Tabelle enthält daher u. U. weniger als die erwartete Anzahl an Resonanzsignalen, zumal das Isomerenverhältnis in einigen Fällen ziemlich ungünstig ausfällt und sich die Anzahl der Signale bei unsymmetrischer Substitution nahezu verdoppelt. Erschwerend kommt hinzu, daß gerade die diphenylmethylenverbrückten Verbindungen wesentlich schlechter in CDCl₁ löslich sind als die isopropylidenverbrückten. Die Zuordnung der Signale erfolgt nur dort, wo sie durch Vergleich zweifelsfrei möglich ist.

2.3. Synthese der Metallocenkomplexe (Katalysatorvorstufen) ($C_{13}H_{8-n}R_{n}CR'_{2}C_{3}H_{4}$)MCl₂ (n = 1,2; R =Alkoxy, Alkyl, Aryl, Hal; R' = Me, Ph; M = Zr, Hf) (17b-34b)

Die bekannten Vorschriften zur Synthese von Metallocenkomplexen des Typs $(C_{13}H_8CR_2C_5H_4)MCl_2$ (R = Me, Ph; M = Zr, Hf) [16,21,26] sind unnötigerweise kompliziert. So ist es weder erforderlich, das Dilithiumsalz der Ligandenvorstufe in Tetrahydrofuran zu erzeugen und anschließend das Lösungsmittel gegen Pentan zu wechseln [21,26], noch empfiehlt es sich, das Dianion zu einer auf - 78°C gekühlten Suspension von Zirkonium- oder Hafniumtetrachlorid in Methylenchlorid zu geben [16], weil dieses Vorgehen zu drastisch verringerten Ausbeuten führt. Am besten hat sich die Methode bewährt, die sich im Arbeitskreis etabliert hat [32] und die hier an die stark unterschiedliche Löslichkeit der komplexen Produkte angepaßt worden ist. Eine Lösung oder Suspension der Ligandenvorstufe in wenig Ether wird mit zwei Äquivalenten *n*-Butyllithium versetzt und zwölf Stunden bei Raumtemperatur gerührt. Dann wird ein geringer Überschuß an Zirkonium- oder Hafniumtetrachlorid in fester Form zugegeben, drei bis vier Stunden gerührt und anschließend aufgearbeitet.

 R^1 , $R^2 = H$, Alkoxy, Alkyl, Aryl, Hal $R^3 = Me$, Ph M = Zr, Hf

Abb. 2 gibt einen Überblick über die neuen syndiospezifischen Katalysatorvorstufen. Die Numerierung

Abb. 2. Übersicht über die neuen syndiospezifischen Katalysatorvorstufen.

	ţ
	ļ
	1
	4
	1
	~
ŝ	Ξ.
2	1
Å	
- 24	

Tabelle 3 ¹H- und ¹³C-NMR-Daten der Metallocendichloridkomplexe **17b-34b** (5-Wente in ppm)

N.	E-ZMR	¹⁵ C-NMR
136	2.35 (s, 6 H), 2.39 (s, 6 H), 5.71 (m, 2 H, C ₅ H ₄), 6.31 (m, 2 H, C ₅ H ₄), 7.35 (d. ³ /(⁰ H, ¹ H) 85 H ₂ . 2 H). 7 57 (s. 2 H). 7 03(d. ³ /d ⁴ H) ⁰ H) 85 H ₂ . 2 H).	22.8, 28.9, 63.4, 101.7, 101.9, 118.7, 119.1, 122.3, 124.3, 127.5, 139.2, 139.5
181	2.43 (s, 6 H), 5.79 (m, 2 H, a-C ₅ H ₄), 6.34 (m, 2 H, β-C ₅ H ₄), 7.4–7.6 (m, 10	29.0, 41.7, 102.1, 119.3, 119.8, 120.0, 125.0, 125.9, 127.0, 126.2, 127.7,
	H), 7.78 (d. ³ /(¹ H, ¹ H) 8.8 Hz, 2 H), 7.92 (s, 2 H), 8.18 (d. ³ /(¹ H, ¹ H) 7.7 Hz, 2 H)	127.9, 128.8, 128.9, 141.0, 145.3 ª
461	1.98 (s, 6 H), 2.15 (s, 6 H), 2.30 (s, 6 H), 2.35 (s, 6 H), 5.66 (m, 2 H, α-C ₅ H ₄), 6.37 (m, 2 H, β-C ₆ H ₄), 6.95 (s, 2 H), 6.97 (s, 2 H), 7.34 (d, ³)(⁴ H, ⁹ H) 8.5 Hz, 2 H), 7.65 (s, 2 H), 8 1.6(d, ³ /d ⁴ H, ¹ H) 8.6 H2, 2 H)	21.0, 21.0, 21.1, 21.5, 102.4, 121.7, 123.7, 123.9, 124.8, 127.6, 128.1, 128.1 128.2, 128.5, 136.1, 136.7, 137.2, 138.4, 142.3
2019	1.31 (s. 18 H). 2.37 (s, 6 H), 5.63 (m. 2 H. ar C ₅ JI ₄), 6.30 (m. 2 H. B· C ₅ JI ₄), 7.66 (d. ³ /4 ¹ H) 8.7 Hr 2 H), 7.67(s. 2 H), 7.99 (d. ³ M ⁴ H, ⁴ H) 8.7 Hr 3 H)	30.8 (C(CH ₃) ₃), 34.7, 35.3, 40.3, 101.0, 118.2, 119.0, 120.8, 122.4, 123.9, 124.6, 151.5 ⁴
31 b	2.32 (s, 6 H), 3.82 (s, 6 H), 5.70 (m, 2 H, a-C ₅ H ₄), 6.34 (m, 2 H, β-C ₅ H ₄), 7.06 (s, 2 H), 7.37 (m, 2 H), 7.89 (d, ³ /l ⁴ , ¹ , ¹ , ¹) 9.6 H ₂ . ² , ¹ H)	n.b. ^a
22b	2.33 (s, 6 H), 5.80 (m, 2 H, a-C, H,), 6.41 (m, 2 H, B-C, H,), 7.49 (d, ³)(¹ H, ¹ H) 8.8.H2, 2, H), 778 (m, 2 H), 7 adv/1 H, ¹ H), 8.9 H, 7 H,	28.6, 32.6, 103.0, 119.8, 122.2, 123.3, 125.7, 126.5 ª
23b	2.29 (s, 6 H), 5.70 (m, 2 H, a-C, H,), 6.58 (m, 2 H, B-C, H,), 7.42 (s, 2 H), 7 66 (d, ² h(H, ¹ H) 7.5 P, 2 H) 7.95 (m, 2 H)	28.5, 40.1, 103.1, 119.3, 121.0, 123.0, 124.2, 125.7 ª
24b	2.10 (s, 6 H), 5.75 (m, 2 H, a.C ₅ <i>H</i> ₄), 6.06 (s, 2 H), 6.37 (m, 2 H, B.C ₅ <i>H</i> ₄). 7.20–7.47 (m, 8 H), 7.82 (m, 2 H), 7.91 (m, 2 H), 8.00 (d, ³ /t ⁰ H, ¹ H) 8.5 Hz, 2	22.5 (CH ₃), 58.3 (PhCPh), 103.3, 110.4, 118.4, 121.1, 121.8, 123.1, 124.1, 126.6, 127.1, 127.8, 127.9, 128.9, 129.3, 138.4, 144.7
25b	5.78 (m, 2 H, a-C ₅ <i>H</i> ₄), 6.35 (m, 2 H, β-C ₅ <i>H</i> ₄), 6.44 (d, ³)(³ H, ⁴ H) & 4 H2, 1 H), 6.51 (s. 1 H), 7.01 (m, 1 H), 7.1-7.5 (m, 11 H), 7.58 (m, 1 H), 7.78 (m, 1 H), 7.85-8.0 (m, 4 H), 7.18 (d, ³)(⁴ H, ⁴ H) 7.5 H2, 1 H), 7.23 (d, ³)(⁴ H, ⁴ H) 7.5 H ₂ , 1 H).	58.5 (PhCPh), 103.7, 104.0, 111.0, 118.4, 118.9, 121.5, 121.6, 121.8, 121.8, 121.8, 121.8, 121.8, 123.2, 123.2, 124.0, 124.7, 125.0, 125.3, 125.7, 125.9, 126.6, 126.8, 127.2, 127.4 127.5, 127.7, 128.2, 128.7, 129.0, 129.1, 129.2, 129.5, 140.8, 141.3, 144.6, 144.7, 144.5, 145.5, 145
26b	5.77 (m, 2, H, α-C, <i>H</i> ,), 6.34 (m, 2, H, β-C, <i>H</i> ,), 6.54 (s, 2, H), 7.20–7.50 (m, 16 H), 7.79 (d, ³)(¹ H, ¹ H) 8.6 Hz, 2, H), 7.93 (m, 2, H), 8.00 (m, 2, H), 8.22 (d, ³ / <i>h</i> (H, ¹ H), 8.7 H, 2, H)	9.6 (PhCPh), 103.9, 110.8, 118.6, 121.5, 121.9, 124.6, 124.9, 126.0, 126.8, 127.3, 127.5, 127.7, 128.7, 129.0, 129.2, 129.4, 140.8, 141.1, 144.6
26c	5.69 (m, 2.H. a. C.5./L), 6.23 (m, 2.H, β-C, <i>H</i> ,), 6.55 (s, 2.H), 7.10–7.46 (m, 16 H), 7.72 (d, ¹ /t'H, ¹ H) 8.7 Hz, 2.H), 7.90 (m, 2.H), 7.96 (m, 2.H), 8.16 (d, ¹ /t'H, ¹ H) 8.7 Hz, 2.H)	101.5, 117.6, 120.1, 120.7, 121.6, 124.8, 125.7, 126.8, 127.3, 127.5, 127.6, 128.7, 129.0, 129.2, 129.5, 140.8, 144.4, 144.9
30b	1.03 (s, 18 H), 5.67 (m, 2 H, a-C; <i>H</i> ,), 6.33 (s, 2 H, B-C; <i>H</i> ,), 6.33 (m, 2 H), 7.15-7.40 (m, 8 H), 7.45 (m, 2 H), 7.61 (d, ³ /C ¹ H, ¹ H) 8.8 Hz, 2 H), 7.88 (m, 2 H) 7.46 (m, 9 M) 8.04 (d, ³ /H ¹ H, ¹ H) 8.8 Hz, 2 H), 7.88 (m, 2	30.6 (C(CH ₃) ₃), 35.0 (C(CH ₃) ₃), 58.2 (PhCPh), 102.7, 118.3, 119.8, 120.7, 121.6, 124.0, 124.6, 127.1, 128.2, 128.9, 129.0, 129.4, 144.7, 150.7
30c	1.03 (s, 18 H), 5.63 (m, 2 H, α-C, μ, 1), 6.28 (m, 2 H, β-C, H _a), 6.36 (s, 2 H), 7.20-7.40 (m, 4 H), 7.44 (m, 2 H), 7.57 (d, ³ /(¹ H, ¹ H))9.0 Hz, 2 H), 7.88 (m, 2 H) 7.96 (m, 2 H) 8.206 (m, ³ /(¹ H))9.0 Hz, 2 H)	30,6 (C(CH ₃) ₃), 35.0 (C(CH ₃) ₃), 58.0 (PhCPh), 100.2, 113.0, 117.4, 119.2, 120.4, 123.9, 124.3, 126.6, 127.1, 128.9, 129.0, 129.4, 144.9, 150.3
31b	1.36 (5, 6 H), 1.40 (5, 6 H), 5.28 (m, 2 H, $\alpha C_{5}H_{2}$), 6.11 (m, 2 H), 6.31 (m, 2 H, $\beta C_{5}H_{2}$), 7.00–7.07 (m, 4 H), 7.08–7.35 (m, 12 H), 7.37 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.72 (m, 2 H), 7.78 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.72 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.72 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.72 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.72 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.72 (m, 2 H), 7.96 (d, $^{5}M'$ H, 1 H) 9.0 Hz, 7 H), 7.96 (d, $^{5}M'$ H, 5	29.9 (CH ₃), 30.3 (CH ₃), 43.4 (C(CH ₃) ₂), 58.1 (PhCPh), 103.3, 118.3, 120.7, 121.4, 122.0, 124.0, 125.3, 125.5, 126.4, 127.0, 127.1, 127.9, 128.2, 128.7, 128.9, 129.0, 129.2, 144.4, 149.6, 150.9
32b	3.32 (s, 6 H), 5.63 (s, 2 H), 5.74 (m, 2 H, α-C, H₄), 6.41 (m, 2 H, β-C, H₄). 7.17 (m, 2 H), 7.20-7.32 (m, 2 H), 7.33-7.48 (m, 4 H), 7.87-7.97 (m, 6 H)	54.8 (CH ₃), 58.2 (PhCPh), 102.9, 103.7, 110.4, 117.2, 118.6, 122.6, 125.4, 126.7, 127.2, 129.0, 129.0, 129.6, 144.3, 159.0
33 b	5.84 (m, 2 H, a-C, <i>H</i> ,), 6.32 (s, 2 H), 6.48 (m, 2 H, B-C, <i>H</i> ,), 7.27 - 7.48 (m, 6 H), 7.51 (d, ¹)(¹ H, ¹ H) 8.9 Hz, 2 H), 7.78 (m, 2 H), 7.88 (m, 2 H), 8.03 (d, ³ /(¹ H, ¹ H) 8.9 Hz, 2 H),	58.2 (PhCPh), 101.9, 104.7, 111.5, 119.2, 120.4, 121.9, 122.7, 125.5, 126.5, 126.9, 127.7, 128.7, 129.3, 129.3, 134.7, 143.6

der Verbindungen wurde so gewählt, daß die Ligandenvorstufen jeweils zusätzlich den Buchstaben **a**, die Zirkoniumkomplexe den Buchstaben **b** und die Hafniumkomplexe den Buchstaben **c** erhalten. Beim Versuch, die Ligandenvorstufe **34a / 34a**[•] zu komplexieren, entstand bisher stets ein nicht trennbares Gemisch (**34b**) mehrerer Zirkonocenkomplexe. Die Struktur dieser Produkte konnte bisher nicht eindeutige geklärt werden.

Tabelle 3 faßt die ¹H- und ¹³C-NMR-spektroskopischen Daten der Verbindungen **17b** bis **34b** zusammen. Die Löslichkeit der isopropylidenverbrückten Komplexe in CDCl₃ oder CD_2Cl_2 ist — im Gegensatz zu den jeweiligen Ligandenvorstufen — wesentlich geringer als die der diphenylmethylenverbrückten analogen Komplexe.

2.4. Die Grenzen der Substituierbarkeit

Die Anzahl der mit der neuen Synthesemethode (Abschnitt 2.1) zugänglichen substituierten Fluorene ist sehr groß. Da der Raum an der Rückseite des Moleküls mehr oder weniger stark von den Brückensubstituenten gefüllt ist, drängte sich die Frage auf, wie groß die Substituenten an den Positionen 1, 2, 7 und 8 sein können, ohne mit den Seitengruppen am Brückenkohlenstoffatom in Konflikt zu geraten. Das Experiment zeigt, daß Komplexe, die in den Positionen 2 und 7 tert-Butylgruppen und in der Brücke zwei Phenylgruppen tragen (30b, 30c), ohne weiteres zugänglich sind. Tauscht man tert-Butyl gegen Mesityl (28a / 28a*, 29a /29a[•]), so gelingt es auch in siedendem Toluol mit n-Butyllithium nicht mehr, das Dilithiumsalz zu generieren, das sich durch eine orange bis rote Farbe zu erkennen gibt. Dagegen läßt sich der Komplex 19b mit zwei Methylgruppen in der Brücke und Mesityl in den Positionen 2 und 7 des Fluorenylidenfragmentes nach der Standardmethode synthetisieren. Auch die Ligandenvorstufe 27a/27a bildet ohne erkennbare Verzögerung ein rotes Dilithiumsalz; ein Komplex mit diesem Liganden konnte jedoch noch nicht rein isoliert werden.

In diesem Zusammenhang erwähnenswert sind auch die folgenden Beobachtungen: Seitengruppen in den Positionen 1 und 8 des Fluorenylidenfragmentes treten in noch stürkere sterische Konkurrenz zu den Brückensubstituenten. So gelingt es nicht, die Ligandenvorstufen **35a / 35a**^{*} und **36a / 36a**^{*} zweifach zu lithiieren. Die hellgelben Reaktionslösungen wurden nach 24 Stunden hydrolysiert. Die gaschromatographische Analyse zeigte lediglich die reinen Ligandenvorstufen. Offensichtlich können sterische Ansprüche die Deprotonierung des Fluorenylfragmentes verhindern, wenn dieses dadurch in eine ungünstige Lage gebracht würde (Änderung der Geometrie des Kohlenstoffatoms in Position 9 von tetraed⁻¹ sch nach trigonal planar).

Abb. 3. Die Ligandenvorstufen 19a/19a^{*} und 27a/27a^{*} lassen sich mit *n*-Butyllithium zweimal deprotonieren, 28a/28a^{*} und 29a/29a^{*} dagegen nicht.

Eine Ligandenvorstufe, die zwei Phenylgruppen am Brückenkohlenstoff und eine Methylgruppe in Position 1 des Fluorenylfragmentes trägt, ist nach der oben beschriebenen Methode nicht zugänglich. Auch in Tetrahydrofuran reagiert 1-Methylfluorenyllithium [32] nicht mit Diphenylfulven.

2.5. Polymerisation von Prcpylen und Vergleich der katalytischen Eigenschaften

Alle Katalysatoren wurden unter vergleichbaren Bedingungen für die Massepolymerisation von Propylen getestet (siehe experimenteller Teil). Abweichungen sind in den Tabellen 4 und 5 gekennzeichnet. Obwohl die Substituenten in den sterisch wenig wirksamen Positionen 2 und 7 sitzen, die vom aktiven Zentrum des jeweiligen Katalysatormoleküls abgewandt sind, üben sie einen z. T. sehr deutlichen Einfluß auf die Propylenpolymerisation aus. Die Aktivitäten unterscheiden sich um etwa den Faktor 200, wenn man die jeweils aktivsten Katalysatoren jeder Gruppe mit den analogen Methoxyderivaten vergleicht. Die Beobachtung, daß

🇯 📼 asymmetrisch subst. Kohlenstoffatom

Abb. 4. Ligandenvorstufe A ist nicht nach der Fulvenmethode zugänglich. $35a/35a^{\circ}$ und $36a/36a^{\circ}$ bilden mit *n*-Butyllithium lediglich das Monoauion.

Komplex ^a	Nr.	Aktivität (kg PP	T _{i,max} b	M _n	T _{m2} f	r ⁸	
		(mmol Kat h) ⁻¹)	(°C)	(kg mol ⁻⁺)	(°C)	(%)	
Н	[lg, ls]	33.5	59.5	82	135.0	94.6 [16]	
2,7-Me,	17b	11.2	59.4	80	131.2	94.9	
2,7-Ph2	18b	17.6	58.9	65	132.5	92.7	
2,7-Mes,	19Ь	77.1	61.0	150	132.7	n.b.	
2,7-('-Bu),	20ь	54.8	60.4	74	142.0	93.5 °	
2,7-(MeO),	21b	0.3	58.7	20	96.3 °	n.b.	
2,7-Cl ₂	22b	20.7 ^d	60.9	n.b.	n.b.	92.9	
2,7-Br,	236	26.8	58.9	60	131.0	90.5	

Tabelle 4 Isopropylidenverbrückte Zirkoniumkomplexe

^a Die Kürzel geben Position und Art der Substituenten am Fluorenylidenfragment an. ^b $T_{i,max}$ = maximale Temperatur während der Polymerisation, ^c Schr breiter Kurvenverlauf. ^d 43 min Polymerisationsdauer. ^c 70°C Polymerisationstemperatur. ^f Maximum des endothermen Schmelzpeaks beim zweiten Aufheizvorgang (DSC). ^g r(%) = 1/2 mr + rr, mr = mmrm + mmrr + rmrm + rmrr, rr = mrm + mrrr + rrrr [21].

Methoxygruppen die Aktivität stark herabsetzen, wurde bereits von anderen Arbeitsgruppen an substituierten Bisindenylzirconiumdichloridkomplexen gemacht [13, 22]. Die elektronischen Einflüsse elektronenziehender Halogensubstituenten oder elektronenschiebender Alkylgruppen reichen als Erklärung nicht aus. Möglicherweise koordinieren die freien Elektronenpaare der Sauerstoffatome an das MAO(-Anion), das dadurch in der unmittelbaren Nähe des aktiven Zentrums festgehalten wird und die Koordination und Insertion von Monomermolekülen an das Zirkoniumzentrum erheblich behindert. Das Molekulargewicht ist bei den mit methoxyhaltigen Katalysatoren erzeugten Polypropylenproben am niedrigsten; außerdem sind die DSC-Schmelzkurven außergewönlich breit. Es kann ausgeschlossen werden, daß die Methoxygruppen intermolekular mit kationischen Zirkoniumzentren wechselwirken, denn ein zehnfacher Überschuß an 1 (bezogen auf Zr) hatte in einem Kontrollexperiment keinen

meßbaren Einfluß auf die Aktivität von $(C_{13}H_8CPh_2-C_5H_4)ZrCl_2-MAO$ gegenüber Propylen.

Kleine Alkylgruppen oder Halogensubstituenten wirken sich in der Regel negativ auf die Polymerisationseigenschaften aus, wenn auch die Effekte relativ sind. Die besten Ergebnisse werden mit solchen Katalysatoren erzielt, die sehr große Seitengruppen in den Positionen 2 und 7 tragen. Mesitylgruppen in 19b bewirken eine Aktivitätssteigerung und eine Erhöhung des Molekulargewichts um jeweils etwa das Doppelte, verglichen mit dem unsubstituierten Katalysator. tert-Butylgruppen (20b, 30b, 30c) erhöhen jeweils den Schmelzpunkt des Polypropylens. Aktivität und Molmasse des Polymeren steigen jeweils in der Reihe Me Ph < tert-Butyl < Mesityl bei den isopropylidenverbrückten und Me < Ph ≈ tert-Butyl < PhMe₂C bei den diphenylmethylenverbrückten Katalysatoren. Eine Deutung dieses Befunds wird in einer späteren Publikation veröffentlicht. Die Hafniumverbindungen 26c und 30c

Tabelle 5 Diphenylmethylenverbrückte Metallocenkomplexe

Komplex *	Nr.	Aktivität (kg PP	Ti.may b	M _n	T_{m2}	r 8
		(united Kacin) ()		(kg moi)	(°C)	(%)
н	[16]	44.4[16]	60.0	547[16]	139[16]	96.5[16]
Н	[26]	7.5[26]	50.0	1950[26]	101.0[26]	90.3[26]
2.7-Me,	24b	34.7 °	59.4	330	134.0	n.b.
2∘Ph	25ь	24.5	59.1	240	126.3	n.b.
2.7-Ph ₂	26b	35,4	59.3	260	131.7	91.7 h
2.7.Ph,	26c	15.7	59.3	1200	135 5	n h
2.7-('Bu),	30b	31.8 *	59.6	310	136.4	n b
2.7-('Bu)2	30c	13.7	58.6	850	138.4	n.b.
2.7-(PhMe ₃ C),	316	72.7 °	63.0	520	1150	n h
2.7-(MeO)	32b	0.4 ^d	58.6	< 60	1161	n b
2,7-Cl ₂	33b	41.0	59.1	175	129.6	92.8 1

⁶ Die Kürzel geben Position und Art der Substituenten am Fluorenylidenfragment an. ⁶ $T_{i,max} = maximale$ Temperatur während der Polymerisations. tion. ⁶ 2 ml MAO (30%) zum Trocknen. ^d 95 min Polymerisationsdauer. ^e 38 min Polymerisationsdauer. ^f Maximum des endothermen Schmelzpeaks beim zweiten Aufheizvorgang (DSC). ⁸ r(%) = 1/2 mr + rr, mr = mmrm + mmrr + rmrm + rmrr, rr = mrrm + mrrr + rrrr [21]. ⁶ 70°C Polymerisationstemperatur. ^f 30°C Polymerisationstemperatur, $T_{i,max} = 53.0°C$. sind etwa halb so aktiv wie die analogen Zirkoniumkomplexe **26b** und **30b**, dafür ist die Zahl der Kettenabbrüche nicht so hoch und das Molekulargewicht des Polypropylens wesentlich höher.

3. Experimenteller Teil

3.1. NMR

Zur Aufnahme von NMR-Spektren standen die Geräte Jeol FX 90Q, Jeol EX 270, Bruker AC 300 und Bruker AM 500 zur Verfügung. Die Proben wurden unter Argon abgefüllt und, wenn nicht anders angegeben, bei 25°C gemessen. Die chemischen Verschiebungen beziehen sich in ¹H-NMR-Spektren auf das Restprotonensignal des Lösungsmittels ($\delta = 7.24$ für Chloroform- d_1), in ¹³C-NMR-Spektren auf das Lösungsmittelsignal ($\delta =$ 77.0 für Chloroform- d_1).

3.2. MS

Die Messungen erfolgten routinemäßig mit einem Varian MAT CH7-Gerät (Direkteinlaßsystem, Elektronenstroßionisation 70 eV). GC-MS-Spektren wurden an einem Varian 3700 Gaschromatographen in Verbindung mit einem Varian MAT 312-Massenspektrometer aufgenommen.

3.3. Gaschromatographie

Zur Analyse organischer Verbindungen wurde ein Gaschromatograph Carlo-Erba HRGC mit Flammenionisationsdetektor verwendet. Der Gaschromatograph war mit einer 30 m langen J&W Fused-Silica-Säule (DB1, Filmdicke 0.25 μ m) ausgerüstet. Helium diente als Trägergas; der Fluß durch die Säule betrug 3.8 ml min⁻¹, Split 1:30, Septumspülung 1.3 ml min⁻¹. Folgendes Temperaturprogramm wurde standardmäßig angewendet: 3 Minuten bei 50°C (Startphase), 5 K min⁻¹ (Aufheizphase), 15 Minuten bei 310°C (Plateauphase). Die Retentionszeit wurde jeweils in Sekunden angegeben.

3.4. Darstellung von 2,7-Dimethoxy-9H-fluoren (1)

20.0 g (61.7 mmol) 2,7-Dibromfluoren werden unter Argon zu einer Mischung von 7.1 ml (72.0 mmol) Ethylacetat und 38.8 g (0.71 mol) Natriummethanolat in 100 ml Methanol gegeben. Nach Zugabe von 3.3 g (33.7 mmol) Kupfer(1)bromid erhitzt man sechs bis acht Stunden unter Rückfluß. Die viskose orange Suspension färbt sich dabei allmählich violett. Sie wird in 300 ml Wasser gegossen, mit Salzsäure angesäuert und mit Ether, Toluol oder Tetrahydrofuran ausgeschüttelt. Die vereinigten organischen Phasen werden über Natriumsulfat gerocknet, über Kieselgel filtriert und gegebenenfalls eingeengt. Aus der Lösung kristallisiert das Produkt in Form blaßgelber Nadeln aus. Ausbeute (GC) 70-80%. Schmp. 150-151°C. GC 2069 s. MS, m/e226 (M⁺).

3.5. Darstellung von 2,7-Dibenzoyl-9H-fluoren (2)

Eine Mischung von 5.0 g (30.1 mmol) Fluoren und 8.0 g (65.5 mmol) Benzoesäure werden in einen 1000 ml Erlenmeyerkolben gegeben, in dem sich bei etwa 120 bis 130°C 100 g Polyphosphorsäure befinden. Es wird zwei Stunden bei dieser Temperatur gerührt und von Zeit zu Zeit die sublimierende Benzoesäure von der Glaswand abgekratzt. Nach dem Abkühlen der dunkelbraunen Mischung wird unter Rühren vorsichtig mit Eiswasser verdünnt. Man erhitzt die Suspension zum Sieden und filtriert die gelöste Benzoesäure und die Phosphorsäure ab. Der Rückstand wird mit heißem Wasser gewaschen, in heißem Toluol gelöst, die Lösung getrocknet, über Kieselgel filtriert und bei 0°C zur Kristallisation gebracht. Hellbraune Kristalle, Ausbeute 50-60%. Schmp. 190-191°C. GC (Plateauphase 15 min bei 320°C) 3556 s, MS, m/e 374 (M⁺).

3.6. Darstellung von 2,7-Bis(1-methyl-1-phenylethyl)-9H-fluoren (3)

6.0 g (16.1 mmol) 2 werden in einem Dreihalskolben mit Rückflußkühler und Tropftrichter unter Argon in 80 ml Toluol gelöst und mit fünf Tropfen Eisessig versetzt. Es werden unter Eiskühlung langsam 13 ml (0.14 mmol) Trimethylaluminium in 50 ml Toluol zugetropft und anschließend vier Stunden unter Rückfluß erhitzt. Man läßt auf Raumtemperatur abkühlen, gießt die Lösung vorsichtig unter Rühren in 500 ml Eiswasser und schüttelt mit heißem Hexan aus. Nach dem Trocknen über Natriumsulfat wird heiß über wenig Kieselgel filtriert und die Lösung zur Kristallisation auf 0°C abgekühlt. Farblose Kristalle, Ausbeute (GC) 90–95%. Schmp. 141–142°C. GC (Plateauphase 15 min bei 320°C) 3371 s. MS, m/e 403 (M⁺).

3.7. Darstellung 2- und 2,7-substituierter Alkyl- und Arylfluorene (4–16) am Beispiel 2,7-Diphenyl-9H-fluoren (11)

Zu einer Grignardlösung aus 3.0 g (0.12 mol) Magnesiumpulver und 12.9 ml (0.12 mol) Brombenzol in 150 ml Ether werden 0.5 g Ni(dppp)Cl₂ und anschließend 12.9 g (31 mmol) 2,7-Diiodfluoren gegeben. Die Suspension erwärmt sich innerhalb weniger Minuten und siedet unter Rückfluß. Dabei bildet sich eine dicke, hellgrüne Suspension. Nach 30 Minuten ist der Umsatz nahezu vollständig (GC: 90% 11, 6% 5). Die Isolierung erfolgt durch saure Hydrolyse, Extraktion mit siedendem Toluol und Filtration der heißen toluolischen Lösung über Kieselgel. Beim Abkühlen fällt 11 als hellgelber Niederschlag aus. Schmp. $269-270^{\circ}$ C. GC 3147 s. MS, m/e 318 (M⁺).

Ein Parallelversuch mit 10.0 g (31 mmol) 2,7-Dibromfluoren zeigt nach vier Tagen ein Produktverhältnis von 17% 5, 5% 2-Brom-7-phenylfluoren und 73% 11.

3.7.1. 2-Methyl-9H-fluoren (4)

Ausbeute (GC) 75%. Abtrennung von Fluoren, das als Nebenprodukt entsteht, durch mehrmalige Kristallisation aus Ethanol. Schmp. 88-89°C. GC 1545 s. MS, m/e 180 (M⁺).

3.7.2. 2-Phenyl-9H-fluoren (5)

Ausbeute (GC) 80%. Blaßgelbes Pulver aus Toluol. Schmp. 180–181°C. GC 2370 s. MS, m/e 242 (M⁺).

3.7.3. 2-(4-Fluorphenyl)-9H-fluoren (6)

Ausbeute 65%. Heligelbes Pulver aus Toluol. Schmp. 227-230°C. GC 2357 s. MS, m/e 263 (M⁺).

3.7.4. 2-(2,4,6-Trimethylphenyl)-9H-fluoren (7)

Ausbeute (GC) 88%. Blaßgelbe Kristalle aus Ether. Schmp. 175-176°C. GC 2463 s. MS, m/e 284 (M⁺).

3.7.5. 2,7-Dimethyl-9H-fluoren (8)

Ausbeute (GC) 70-80%. Abtrennung von 4, das als Nebenprodukt entsteht, durch mehrmalige Kristallisation aus Ethanol. GC 1712 s. MS, m/e 194 (M⁺).

3.7.6. 2,7-Diisopropyl-9H-fluoren (9)

Ausbeute (GC) 80%. Farblose Kristalle aus Pentan. Schmp. $108-109^{\circ}$ C. GC 2107 s. MS, m/e 250 (M⁺).

3.7.7. 2,7-Dicyclohexyl-9H-fluoren (10)

Ausbeute (GC) 59%. Blaßgelbes Pulver aus Toluol. Schmp. 162-163°C. GC 3066 s.

3.7.8. 2,7-Bis(4-methylphenyl)-9H-fluoren (12)

Ausbeute (GC) 70%. Blaßgelbes Pulver aus Toluol. Schmp. 177–178°C. GC 3355 s. MS, m/e 346 (M⁺).

3.7.9. 2,7-Bis(4-methoxyphenyl)-9H-fluoren (13)

Ausbeute 50-60%. Farbloses Pulver aus Toluol. Schmp. $264-266^{\circ}$ C. MS, m/e 378 (M⁺).

3.7.10. 2,7-Bis(2,4-dimethylphenyl)-9H-fluoren (14)

Ausbeute (GC) 70-80%. Blaßgelbe Kristalle aus Toluol. Schmpl. 214-215°C. GC 3286 s. MS, m/e 374 (M⁺).

3.7.11. 2,7-Bis(2,4,6-trimethylphenyl)-9H-fluoren (15)

Ausbeute (GC) 70-80%. Blaßgelbe Kristalle aus Ether. Schmp. 221-222°C. GC 3252 s. MS, m/e 402 (M⁺).

3.7.12. 2,7-Bis(1-naphthyl)-9H-fluoren (16)

Ausbeute 60%. Farbloses Pulver aus Aceton. Schmp. 168–169°C. MS, m/e 418 (M⁺).

3.8. Allgemeine Synthesevorschrift für Ligandenvorstufen des Typs $(C_{13}H_{9-n}R_n)CR'_2Cp$ (n = 1, 2; R = Alkoxy, Alkyl, Aryl, Hal; R' = Me, Ph) $(17a / 17a^* - 36a / 36a^*)$

5.0 g Fluoren oder substituiertes Fluoren werden in 100 ml Ether gelöst oder suspendiert und langsam die äquivalente Menge n-Butyllithium in Hexan zugegeben. Die orange bis dunkelviolette Lösung oder Suspension wird zwei bis vier Stunden bei Raumtemperatur gerührt. Dann wird die äquivalente Menge des substituierten Fulvens zugegeben und bei Raumtemperatur weitergerührt. 6,6-Dimethylfulven reagiert sehr viel schneller als 6,6-Diphenylfulven, letzteres sollte mindestens übernacht bei Raumtemperatur gerührt werden. Dann werden etwa 0.1 Äquivalente *n*-Butyllithium zugegeben. um eventuell vorhandenes überschüssiges Fulven in ein leichter lösliches, farbloses Derivat zu überführen. Nach weiterem 30 minütigen Rühren wird mit wenig Wasser hydrolysiert. Je nach Löslichkeit des Produktes wird die etherische Lösung getrocknet und über Kieselgel filtriert oder das Lösungsmittel gewechselt. Die Kristallisation erfolgt aus dem jeweils angegebenen Lösungsmittel. Die Ausbeuten wurden nicht exakt bestimmt, da es auf hohe Reinheit der Ligandenvorstufen ankam. Sie liegen bei 70-95%.

3.8.1. 9-[1-(1,3-Cyclopentadien-1-yl)-1-methylethyl]-2,7-dimethyl-9H-fluoren und Isomer (17a / 17a*)

Farblose Kristalle aus Pentan. Schmp. 134–135°C. GC 2354 s. MS, m/e 300 (M⁺).

3.8.2. 9-[1-(1,3-Cyclpentadien-1-yl)-1-methylethyl]-2,7diphenyl-9H-fluoren und Isomer (18a / 18a*)

Farblose Kristalle aus Toluol. Schmp. 184–185°C. MS, m/e 424 (M⁺).

3.8.3. 9-[1-(1,3-Cyclopentadien-1-yl)-1-methylethyl]-2.7-bis(2,4,6-trimethylphenyl)-9H-fluoren und Isomer (19a/19a*)

Blaßgelbe Kristalle aus Pentan. Schmp. 184–187°C. MS, m/e 632 (M⁺).

3.8.4. 9-[1-(1,3-Cyclopentadien-1-yl)-1-methylethyl]-2,7-bis(1,1-dimethylethyl)-9H-fluoren und Isomer (20a /20a*)

Farblose Kristalle aus Ether. Schmp. 109–10°C. GC 2762 s. MS, m/e 424 (M⁺).

3.8.5. 9-[1-(1,3-Cyclopentadien-1-yl)-1-methylethyl]-2,7-dimethoxy-9H-fluoren und Isomer (21a/21a⁺)

Farblose Kristalle aus Aceton. Schmp. 116-117°C. GC 2685 s. MS, m/e 332 (M⁺).

3.8.6. 9-[1-(1,3-Cyclopentadien-1-yl)-1-methylethyl]-2,7-dichlor-9H-fluoren und Isomer (22a/22a*)

Farblose Kristalle aus Pentan. Schmp. 120–121°C. GC 2558 s. MS, m/e 341 (M⁺).

3.8.7. 9-[1-(1,3-Cyclopentadien-1-yl)-1-methylethyl]-2,7-dibrom-9H-fluoren und Isomer (23a/23a*)

Farblose Kristalle aus Pentan oder Ether. Schmp. 130–131°C. GC 2769 s. MS, m/e 430 (M⁺).

3.8.8. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7dimethyl-9H-fluoren und Isomer (24a / 24a*)

Farblose Kristalle aus Toluol. Schmp. 173–174°C. GC 3255 s. MS, m/e 424 (M⁺).

3.8.9. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2phenyl-9H-fluoren und Isomer (25a / 25a*)

Blaßgelbes Pulver aus Aceton. Schmp. 162–163°C. MS, m/e 472 (M⁺).

3.8.10. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7diphenyl-9H-fluoren und Isomer (26a / 26a*)

Hellbeige Kristalle aus Toluol. Schmp. 165-166°C. MS, m/e 548 (M⁺).

3.8.11. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7bis(2,4-dimethylphenyl)-9H-fluoren und Isomer (27a/ 27a*)

Schmp. 172–173°C. MS, m/e 604 (M⁺).

3.8.12. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2-(2,4,6-trimethylphenyl)-9H-fluoren und Isomer (28a/ 28a*)

Farblose Kristalle aus Aceton. Schmp. $177-178^{\circ}$ C. MS, m/e 514 (M⁺).

3.8.13. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7bis(2,4,6-trimethylphenyl)-9H-fluoren und Isomer (29a /29a*)

Farblose Kristalle aus Aceton oder Hexan. Schmp. $144-145^{\circ}$ C. MS, m/e 632 (M⁺).

3.8.14. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7bis(1,1-dimethylethyl)-9H-fluoren und Isomer (30a/ 30a*)

Farblose Kristalle aus Ether. Schmp. 164--165°C. GC 3601 s. MS, m/e 508 (M⁺).

3.8.15. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7bis(1-methyl-1-phenylethyl)-9H-fluoren und Isomer (31a/31a*)

Farblose Kristalle aus Aceton. Schmp. 158–159°C. MS, m/e 632 (M⁺).

3.8.16. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7dimethoxy-9H-fluoren und Isomer (32a/32a*)

Blaßgelbe Kristalle aus Aceton. Schmp. 179–180°C. GC 3495 s. MS, m/e 456 (M⁺).

3.8.17. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7dichlor-9H-fluoren und Isomer (33a/33a*) Farblose Kristalle aus Aceton. Schmp. 166-67°C. GC 3458 s. MS, m/e 341 (M⁺).

3.8.18. 9-(1,3-Cyclopentadien-1-yldiphenylmethyl)-2,7dibrom-9H-fluoren und Isomer (34a/34a*)

Hellgelbe Kristalle aus Ether. Schmp. 148-150°C. GC 3639 s. MS, m/e 554 (M⁺).

3.8.19. 9-[1-(1,3-Cyclopentadien-1-yl)-1-methylethyl]-1-methyl-9H-fluoren und Isomer (35a/35a⁺)

Farblose Kristalle aus Pentan. Schmp. 92–93°C. GC 2317 s. MS, m/e 286 (M⁺).

3.8.20. 9-[1-(1,3-Cyclopentadien-1-yl)-1-phenylether]-1-methyl-9H-fluoren und Isomer (36a / 36a*)

Farblose Kristalle aus Pentan. Schmp. 72–73°C. GC 2849 s. MS, m/e 348 (M⁺).

3.9. Allgemeine Synthesevorschrift für verbrückte Metallocenkomplexe des Typs $(C_{13}H_{8-n}R_n)CR'_2(C_5H'_4)$ - MCl_2 (n = 1, 2; R = Alkoxy, Alkyl, Aryl, Hal; R' = Me,Ph; M = Zr, Hf) (17b-34b)

1.0 g der Ligandenvorstufe wird in 30 ml Ether gelöst oder suspendiert und mit exakt zwei Äquivalenten *n*-Butyllithium (1.6 M in Hexan) mindestens acht Stunden bei Raumtemperatur gerührt. Die Lösung/Suspension färbt sich dabei orange bis dunkelviolett. Dann wird ein Äquivalent Zirkonium- oder Hafniumtetrachlorid fest zugegeben. Es wird drei bis vier Stunden gerührt. Die Aufarbeitung richtet sich nach der Löslichkeit des Produktes: bei etherlöslichen Komplexen kann direkt vom entstandenen Lithiumchlorid abfiltriert werden. Bei schwer löslichen Komplexen wird entweder das Lösungsmittel abgezogen und der Rückstand mit Methylenchlorid extrahiert oder man filtriert den Komplex über Natriumsulfat ab, wechselt das Schlenkrohr und löst das Produkt mit Methylenchlorid oder Toluol von der Fritte. Die Kristallisation erfolgt — je nach Löslichkeit — bei +5 bzw. -25 bzw. -78°C.

3.9.1. Dichloro[η^{10} -2,4-cyclopentadien-1-yliden(1methylethyliden)(2,7-dimethyl-9H-fluoren-9-yliden)]zirkonium (17b)

Orangerote Kristalle aus Methylenchlorid $(-25^{\circ}C)$ bzw. $-78^{\circ}C$). MS, m/e 460 (M⁺). **3.9.2.** Dichloro[η^{10} -2,4-cyclopentadien-1-yliden(1methylethyliden)(2,7-diphenyl-9H-fluoren-9-yliden)]zirkonium (18b)

Orangerote Kristalle aus Methylenchlorid $(-25^{\circ}C)$ bzw. $-78^{\circ}C$). MS, m/e 584 (M⁺).

3.9.3. Dichloro[η^{10} -2,4-cyclopentadien-1-yliden(1methylethyliden)[2,7-bis(2,4,6-dimethylphenyl)-9Hfluoren-9-yliden]]zirkonium (19b)

Orangerote Kristalle aus Methylenchlorid (-78° C). Schmp. 268-270°C.

3.9.4. Dichloro[η^{10} -2,4-cyclopentadien-1-yliden(1methylethyliden)[2,7-bis(1,1-dimethylethyl)-9H-fluoren-9-yliden]]zirkonium (20b)

Orange Kristalle aus Methylenchlorid (-78° C). Schmp. ca. 240°C (Zers.). MS, m/e 544 (M⁺).

3.9.5. Dichloro[η^{10} -2,4-cyclopentadien-1-yliden(1methylethyliden)(2,7-dimethoxy-9H-fluoren-9-yliden)]zirkonium (21b)

Orange Kristalle aus Methylenchlorid $(-25^{\circ}C \text{ bzw.} -78^{\circ}C)$. MS, m/e 492 (M⁺).

3.9.6. Dichloro[η^{10} -2,4-cyclcopentadien-1-yliden(1methylethyldien)(2,7-dichlor-9H-fluoren-9-yliden)]zirkonium (22b)

Orangerote Kristalle aus Methylenchlorid $(-25^{\circ}C)$ bzw. $-78^{\circ}C$). Schmp. ca. 246°C (Zers.). MS, m/e 501 (M⁺).

3.9.7. Dichlorol η^{10} -2,4-cyclopentadien-1-yliden(1methylethyliden)(2,7-dibrom-9H-fluoren-9-yliden)]zirkonium (23b)

Dunkelrote Kristalle aus Methylenchlorid (-78° C). Schmp. ca. 240°C (Zers.). MS, m/e 584 (M⁺).

3.9.8. Dichlorol η^{10} -2,4-cyclopentadien-1-yliden(diphenylmethylen)(2,7-dimethyl-9H-fluoren-9-yliden)]zirkonium (**24b**)

Rote Kristalle aus Methylenchlorid (-78° C). MS, m/e 584 (M⁺).

3.9.9. Dichloro[η^{10} -2,4-cyclopentadien-I-yliden(diphenylmethylen)(2-phenyl-9H-fluoren-9-yliden)[zirkonium (**25b**)

Orangerote Kristalle aus Methylenchlorid (-25° C bzw. -78° C). MS, m/e 632 (M⁺).

3.9.10. Dichlorol y ¹⁰-2,4-cyclopentadien-1-yliden(diphenylmethylen)(2,7-diphenyl-9H-fluoren-9-yliden)|zirkonium (**26b**)

Orangerote Kristalle aus Methylenchlorid (-78° C). Schmp. ca. 300°C (Zers.). MS, m/e 708 (M⁺). 3.9.11. Dichloro[η^{10} -2,4-cyclopentadien-1-yliden(diphenylmethylen)(2,7-diphenyl-9H-fluoren-9-yliden)]hafnium (**26c**)

Gelbe Kristalle aus Methylenchlorid $(-25^{\circ}C \text{ bzw.} -78^{\circ}C)$. MS, m/e 795 (M⁺).

3.9.12. Dichloro[η^{10} -2,4-cyclopentadien-1-yliden(diphenylmethylen)[2,7-bis(1,1-dimethylethyl)-9H-fluoren-9-yliden]]zirkonium (**30b**)

Orangerote Kristalle aus Ether $(-25^{\circ}C)$ oder Methylenchlorid $(-78^{\circ}C)$. Schmp. ca. 230°C (Zers.). MS, m/e 668 (M⁺).

3.9.13. Dichloro[η¹⁰-2,4-cyclopentadien-1-yliden(diphenylmethylen)[2,7-bis(1,1-dimethylethyl)-9H-fluoren-9-yliden]]hafnium (**30c**)

Gelbe Kristalle aus Ether (+5°C bzw. -25°C) oder Methylenchlorid (-78°C). MS, m/e 755 (M⁺).

3.9.14. Dichloro[η^{10} -2,4-cyclopentadien-1-yliden(diphenylmethylen)[2,7-bis(1-methyl-1-phenylethyl)-9Hfluoren-9-yliden]]zirkonium (**31b**)

Rote Kristalle aus Ether $(-25^{\circ}C)$ oder Methylenchlorid $(-78^{\circ}C)$. MS, m/e 793 (M^+) .

3.9.15. Dichloro[η^{10} -2.4-cyclopentadien-1-yliden(diphenylmethylen)(2,7-dimethoxy-9H-fluoren-9-yliden)]zirkonium (**32b**)

Orangegelbe Kristalle aus Methylenchlorid (-25° C bzw. -78° C). MS, m/e 616 (M⁺).

3.9.16. Dichlorol η^{10} -(2,7-dichlor-9H-fluoren-9-yliden) (diphenylmethylen)2,4-cyclopentadien-1-yliden|zirkonium (33b)

Orange Kristalle aus Methylenchlorid (-25° C bzw, -78°C). Elementaranalyse gefunden: C, 59.06; H, 3.29. C₃₁H₂₀Cl₄Zr berechnet: C, 59.52; H, 3.22%. Schmp. ca. 265°C (Zers.). MS, *m/c* 501 (M⁺).

3.9.17. Dichloro[η^{10} -(2,7-dibrom-9H-fluoren-9-yliden) (diphenylmethylen)2,4-cyclopentadien-1-yliden]zirkonium (**34b**)

Rote Kristalle aus Methylenchlorid (-78° C). Untrennbares Gemisch mehrerer Komplexe, enthält laut ¹H-NMR keine aliphatischen Protonen.

3.10. Durchführung der Polymerisationsversuche

Die Versuche wurden in einem 1 I Büchi Laborautoklaven BEP 280 durchgeführt. Die Temperatur wurde über einen Thermostaten geregelt. Um ein zu starkes Aufheizen bei der exothermen Polymerisation zu vermeiden, mußte die Katalysatormenge sehr klein gewählt werden.

3.10.1. Vorbereitung des Katalysators

Der jeweilige Metallocendichloridkomplex wurde abgewogen (normalerweise $1-2 \text{ mg} \pm 0.1 \text{ mg}$) und unter Argonatmosphäre mit MAO aktiviert (normalerweise 1 ml MAO (30%) pro 1 mg Metallocendichloridkomplex). Die Lösung wurde mit Toluol auf das 2–10 fache verdünnt. Jeweils 10 ml dieser Lösungen wurden innerhalb von 60 Minuten zur Polymerisation verwendet.

3.10.2. Substanzpolymerisation von Propylen

500 mol Propylen ('polymerization grade') wurden in den Reaktor einkondensiert, 10 ml MAO (30%) zugegeben und dann 15-30 Minuten bei 20°C gerührt. Dann wurde auf 0 bis -5°C abgekühlt. Die vorbereitete Katalysatorlösung wurde mit 7.5 bar Argondruck in das gekühlte Rührgefäß gepreßt und die Temperatur innerhalb von 20-22 Minuten auf 60°C gebracht. Um Fehler, die durch die Aufheizperiode entstehen, gering zu halten, wurde standardmäßig 120 Minuten lang polymerisiert, gerechnet vom Zeitpunkt des Erreichens der Endtemperatur im Thermostaten. Die Polymerisation wurde durch Ablassen des unverbrauchten Propylens beendet.

Für die letzten Polymerisationsversuche stand eine Aluminiumoxid-Trocknungsanlage für das Propylen zur Verfügung. Auf die Vorbehandlung mit MAO konnte dadurch nicht völlig verzichtet werden, allerdings wurde die Menge auf 2 ml MAO (30%) reduziert.

3.11. Charakterisierung der Polypropylenproben

3.11.1. NMR

Die ¹³C-NMR-Spektren der Polypropylenproben wurden in 1,2,4-Trichlorbenzol/1,1,2,2-Tetrachlorethan- d_2 (1:4 v/v) am Gerät Jeol EX 270 bei 110°C aufgenommen.

3.11.2. DSC

Zur Messung der thermischen Eigenschaften der Polymerproben stand das Gerät Netzsch DSC 200 zur Verfügung. Die Proben wurden vor der Messung im Vakuum getrocknet. Jeweils 5–10 mg wurden in Standardaluminiumpfännchen eingeschweißt und mit folgendem Temperaturprogramm gemessen: (1) Aufheizphase (20 K min⁻¹) von -40°C auf +200°C, isotherme Phase (3 min) bei +200°C, Abkühlphase (-20 K min⁻¹) auf -40°C, (2) Aufheizphase (20 K min⁻¹) von -40°C auf +200°C. Bei mehreren Schmelzpunkten ist der jeweils höchste Wert angegeben. Die Temperatur wurde linear bezüglich Indium korrigiert (Schmp. 429.78 K); die Schmelzenthalpie von Indium ($H_m = 28.45$ J g⁻¹) wurde zur Kalibrierung benutzt [44].

3.11.3. Viskosimetri

Das Molekulargewicht der Polypropylenproben wurde mit einem Ubbelohde-Präzisionskapillarviskosimeter in *cis/trans*-Dekalin bei $(135 \pm 0.1)^{\circ}$ C durchgeführt. Die Proben wurden vor der Messung im Vakuum getrocknet in verschließbare Kölbchen eingewogen und innerhalb von drei bis vier Stunden bei 140–150°C in einer genau abgemessenen Menge *cis/trans*-Dekalin gelöst. Unlösliche Bestandteile wurden heiß über Glaswolle abfiltriert. Für die Bestimmung von M_{η} standen Eichkurven für drei verschiedene Polymerkonzentrationen zur Verfügung (c = 0.03, 0.1 und 3.0 g dl⁻¹).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und insbesondere der Phillips Petroleum Company (Bartlesville, OK, USA) für die finanzielle Unterstützung.

Literatur

- H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger und R. Waymouth, Angew. Chem., 107 (1995) 1255; Angew. Chem. Int. Ed. Engl., 34 (1995) 1143.
- [2] M. Aulbach und F. Küber, ChiuZ, 28 (1994) 197.
- [3] W. Kaminsky, M. Miri, H. Sinn und R. Woldt, Makromol. Chem. Rapid Commun., 4 (1983) 417.
- [4] W. Kaminsky, K. Külper, H.H. Brintzinger und F.R.W.P. Wild, Angew. Chem., 97 (1985) 507; Angew. Chem. Int. Ed. Engl., 24 (1985) 507.
- [5] W. Kaminsky, Angew. Makromol. Chem., 145-146 (1986) 149.
- [6] W. Kaminsky, K. Külper und S. Niedoba, Makromol. Chem., 3 (1986) 377.
- [7] J.A. Ewen, L. Haspeslagh, J.L. Atwood und H. Zhang, J. Am. Chem. Soc., 109 (1987) 6544.
- [8] K. Soga, T. Shiono, S. Takemura und W. Kaminsky, Makromol. Chem. Rapid Commun., 8 (1987) 305.
- [9] J.A. Ewen, R.L. Jones, A. kazavi und J.D. Ferrara, J. Am. Chem. Soc., 110 (1988) 6255.
- [10] H. Wiesenfeldt, A. Reinmuth, E. Barsties, K. Evertz und H.H. Brintzinger, J. Organomet. Chem., 369 (1989) 359.
- [11] W.A. Herrmann, J. Rohrmann, E. Herdtweck, W. Spaleck und A. Winter, Angew. Chem., 101 (1989) 1536; Angew. Chem. Int. Ed. Engl., 28 (1989) 1511.
- [12] J.A. Ewen und A. Razavi, US Patent 4 892 851, 1990.
- [13] N. Piccolrovazzi, P. Pino, G. Consiglio, A. Sironi und M. Moret, Organometallics, 9 (1990) 3098.
- [14] G.S. Herrmann, H.G. Alt und M.D. Rausch, J. Organomet. Chem., 401 (1991) C5.
- [15] J.C.W. Chien, G.H. Llinas, M.D. Rausch, G.Y. Lin und H.H. Winter, J. Am. Chem. Soc., 113 (1991) 8569.
- [16] A. Winter, J. Rohrmann, M. Antberg, V. Dolle und W. Spaleck, Ger. Offen. DE Patent 3 907 965, 1990.; Chem. Abstr., 114 (1991) 165103w.
- [17] J.A. Ewen, J.M. Elder, R.L. Jones, L. Haspeslagh, J.L. Atwood, S.G. Bott und K. Robinson, *Makromol. Chem. Macromol.* Symp., 48-49 (1991) 253.
- [18] A. Zambelli, C. Pellecchia und L. Olivia, Makromol. Chem. Macromol. Symp., 48-49 (1991) 297.
- [19] A. Razavi, Fina Research, persönliche Mitteilung, 1992.
- [20] K. Hortmann und H.H. Brintzinger, New J. Chem., 16 (1992) 51.

- [21] A. Razavi und J. Ferrara, J. Organomet. Chem., 435 (1992) 299.
- [22] I.M. Lee, W.J. Gauthier, J.M. Ball, B. Iyengar und S. Collins, Organometallics, 11 (1992) 2115.
- [23] B. Rieger, M. Steimann und R. Fawzi, Chem. Ber., 125 (1992) 2373.
- [24] W. Spaleck, M. Antberg, J. Rohrmann, A. Winter, B. Bachmann, P. Kiprof, J. Behm und W.A. Herrmann, Angew. Chem., 104 (1992) 1373; Angew. Chem. Int. Ed. Engl., 31 (1992) 1347.
- [25] J.A. Ewen und M.J. Elder, Makromol. Chem. Macromol. Symp., 66 (1993) 179.
- [26] A. Razavi und J.L. Atwood, J. Am. Chem. Soc., 115 (1993) 7529.
- [27] '40 Years Ziegler Catalysts', Int. Symp. Albert-Ludwigs-Universitüt Freiburg, 1993.
- [28] B. Rieger, G. Jany, R. Fawzi und M. Steimann, Organometallics, 13 (1994) 647.
- [29] U. Stehling, J. Diebold, R. Kirsten, W. Röll, H.H. Brintzinger, S. Jüngling, R. Mülhaupt und F. Langhauser, Organometallics, 13 (1994) 964.
- [30] W. Spaleck, F. Küber, A. Winter, J. Rohrmann, B. Bachmann, M. Antberg, V. Dolle und E.F. Paulus, Organometallics, 13 (1994) 954.
- [31] H.G. Alt, W. Milius und S.J. Palackal, J. Organomet. Chem., 472 (1994) 113.
- [32] H.G. Alt und R. Zenk, im Druck (No. 452).
- [33] (a) R.A. Barnes und R.W. Faessinger, J. Org. Chem., 26 (1961)
 4544. (b) L. Horner und D.W. Baston, Justus Liebigs Ann. Chem., (1973) 910.
- [34] (a) M.K. Dziewonski und A. Obrulowicz, Bull. Acad. Pol. Sci. Ser. Chim. A, (1930) 399. (b) H.C. Brown und G. Marino, J. Am. Chem. Soc., 84 (1962) 1236.

- [35] B.S. Ong, B. Keoshkerian, T.I. Martin und G.K. Hamer, Can. J. Chem., 63 (1985) 147.
- [36] (a) B. Longo, Atti. Accad. Torino (1), 73 (1937-8) 434. (b) L.
 Mascarelli und B. Longo, Gazz. Chim. Ital., 71 (1941) 289. (c)
 R. Knorr, A. Schnegg, E. Lattke und E. Räpple, Chem. Ber., 112 (1979) 3490.
- [37] H. Bradner, US Patent 3 988 437, 1976.
- [38] (a) M.D. Barnettt, G.H. Daub, F.N. Hayes und D.G. Ott, J. Am. Chem. Soc., 81 (1959) 4583. (b) H.O. Wirth, K.H. Gönner, R. Stück und W. Kern, Makromol. Chem., 63 (1963) 30. (c) R.L. Taber, G.H. Daub, F.N. Hayes und D.G. Ott, J. Heterocycl. Chem., 2 (1965) 181. (d) P.E. Fanta, Synthesis, (1974) 9.
- [39] K.A. Kovyrzina und T.A. Tsvetkova, Zh. Org. Khim., 13 (1977) 2395; Chem. Abstr., 88 (1978) 152138f.
- [40] T. Stauner, L. Avar und L. Chardonnens, Helv. Chim. Acta, 53 (1970) 1311.
- [41] (a) W. Hewertson und H.R. Watson, J. Chem. Soc., (1962) 1490. (b) G.R. van Hecke und W.deW. Horrocks, Inorg. Chem., 5 (1966) 1968. (c) H.G. Horn und K. Sommer, Spectrochim. Acta Part A:, 27 (1971) 1049. (d) K. Tamao, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S. Kodama, I. Nakajima, A. Minato und M. Kumada, Bull. Chem. Soc. Jpn., 49 (1976) 1958. (e) M. Kumada, Pure Appl. Chem., 52 (1980) 669.
- [42] K.J. Stone und R.D. Little, J. Org. Chem., 49 (1984) 1849.
- [43] (a) J. Thiele, Ber. Disch. Chem. Ges., 33 (1900) 666. (b) S. Hünig, G. Märkl und J. Sauer, in Integriertes organisches Praktikum, S. 389, VCH, Weinheim, 1979.
- [44] J.A. Ewen, M.J. Elder, R.L. Jones, S. Curtis und H.N. Cheng, in T. Keii und K. Soga (Hrsg.), Studies in Surface Science and Catalysis, Vol. 56, Catalytic Olefin Polymerization, Kodansha und Elsevier, Tokyo und Amsterdam, 1990, S. 439.